Skip to topic | Skip to bottom
Home

Start of topic | Skip to actions

3D Cylindrical RMI

3D Large Eddy Simulations (LES) are performed for different initial shock Mach number. The Ghost Fluid Method (GFM) allows the use of an inner cylindrical finite radius to regularize the apex. The initial perturbation of the interface has an "egg-carton" shape (%$|Cos{}|$%) in both axial and azimuthal direction, on which a smaller symmetry breaking perturbation with random phase is superposed.

More computational details:

  • Adaptive Mesh Refinement (AMROC by R. Deiterding)
  • WENO-TCD with LES (stretched-vortex model by D.I. Pullin)
  • GFM for the inner radius
  • Resolution: 83x83x51 base grid, 2 levels of refinement (refine factors 2,2) %$$\Rightarrow$$% equivalent resolution 332x332x204 (10 ppw at least)

Two different simulations are shown, corresponding to two different initial Mach numbers:

As an example, 3 snapshots from the %$M_{0}=2.0$% run are taken at 3 different times of the simulation (for an initial shock interaction at a radius of 1 m):

t=0 ms t=1.45ms test
Initial state (t=0 ms). After the first shock interaction (t=1.45 ms). After the first reshock (t=5.13 ms).


-- ManuelLombardini - Aug 2006

I Attachment sort Size Date Who Comment
ScalarLevels_M02.0.mpg 5271.0 K 11 Aug 2006 - 22:39 ManuelLombardini Case %$M_{0}=2.0$%: Scalar Contours & Refinement levels
ScalarLevels_M1.3.mpg 4994.5 K 11 Aug 2006 - 22:40 ManuelLombardini Case %$M_{0}=1.3$%: Scalar Contours & Refinement levels

You are here: ConvergingShock > CylRMI3D

to top

Copyright © 1997-2025 California Institute of Technology.