A Stationary Rotating Vortex
We consider a rotating vortex in gaseous flow in two space dimensions. The governing equations are the Euler equations for one polytropic gas. We construct a non-trivial
radially symmetric and
stationary solution by balancing hydrodynamic pressure and centripetal force per volume element, i.e.
where
U(r) denotes the velocity at distance
r away from the origin. For
![\rho_0:=1](http://vtf.website/asc/wiki/pub/Amroc/VortexRotationExactSolution/c8ccb232a91edb43f2a60467d0fe0084.gif)
and the velocity field
![U(r) = \alpha \cdot \left\{ \begin{array}{ll} 2r/R & {\rm if\;} 0<r<R/2, \\ 2(1-r/R) & {\rm if\;} R/2\le r\le R, \\ 0 & {\rm if\;} r>R, \end{array} \right.](http://vtf.website/asc/wiki/pub/Amroc/VortexRotationExactSolution/feed2bf9800be65b2efc5a6ff5ec5ee4.gif)
we find by integrating Eq. (1) with boundary condition
![p(R)=p_0:=2](http://vtf.website/asc/wiki/pub/Amroc/VortexRotationExactSolution/2c1db3e9d688d46fb64d0e816907a3b7.gif)
the pressure distribution
![p(r) = p_0 + 2 \rho_0\alpha^2 \cdot \left\{ \begin{array}{ll} r^2/R^2 + 1 -2\log 2 & {\rm if\;} 0<r<R/2, \\ r^2/R^2 + 3 -4r/R+ 2\log (r/R) & {\rm if\;} R/2\le r\le R, \\ 0 & {\rm if\;} r>R. \end{array} \right.](http://vtf.website/asc/wiki/pub/Amroc/VortexRotationExactSolution/ba35b781f93c46c6a6d041a9231a4d9d.gif)
In Cartesian coordinates the entire solution for Euler equations in primitive variables reads
for all
![t\ge 0](http://vtf.website/asc/wiki/pub/Amroc/VortexRotationExactSolution/ce0e5b544956fa278d68635a6d27f392.gif)
with
![r=\sqrt{(x-x_c)^2+(y-y_c)^2}](http://vtf.website/asc/wiki/pub/Amroc/VortexRotationExactSolution/23676194dcf0f0fff94b3c3c09e6a166.gif)
and
![\displaystyle \varphi={\rm arctan}\frac{y-y_c}{x-x_c}](http://vtf.website/asc/wiki/pub/Amroc/VortexRotationExactSolution/11f9112d2871a6c1eca9277541b25201.gif)
.
This exact smooth solution is applicable to measure the accuracy of Cartesian finite volume schemes alone, but also to quantify the accuracy of imbedded boundary methods by constructing a
radially symmetric no-slip boundary around the origin.
Configuration used in
accuracy study for available patch solvers:
|
Velocity U(r) |
|
Pressure p(r) |
--
RalfDeiterding - 23 Feb 2005
Copyright © 1997-2025 California Institute of Technology.