1D Euler equations - Shocktube

Problem description

Various Riemann problems that serve as standard test cases are computed. The examples demonstrate basic adaptive functionality in one space dimension.

Initial / Boundary Conditions

Test rhol ul pl rhor ur pr x0 tend
1 3.0 0.0 3.0 1.0 0.0 1.0 0.5 0.3
2 1.0 0.75 1.0 0.125 0.0 0.1 0.3 0.2
3 1.0 -2.0 0.4 1.0 2.0 0.4 0.5 0.15
4 1.0 0.0 1000.0 1.0 0.0 0.01 0.5 0.012
5 5.999240 19.59750 460.894 5.999242 -6.19633 46.095 0.5 0.035
6 1.0 -19.59745 1000.0 1.0 -19.59745 0.01 0.8 0.012

Outflow boundary conditions at both sides.


Numerical Simulation

  • One-dimensional Euler-equations for an ideal gas (Air with gamma=1.4)
  • Van Leer solver, MUSCL variable reconstruction with Minmod limiter
  • Calculation with CFL-No. 0.8
  • AMR-computation with a coarse grid of 200 cells
  • 2 levels with refinement factor 2 and 4 are used.
  • Finest level corresponds to 1600 cells

Reference: E.F. Toro, Riemann solvers and numerical methods for fluid dynamics, Springer-Verlag Berlin Heidelberg, 1999


Results: 3 Levels



-- RalfDeiterding - 06 Dec 2004

Amroc > ClawpackHome > ClawpackExamples > ClawpackEulerShocktube
Copyright © 1997-2025 California Institute of Technology.